Application of the Learning Vector Algorithm Quantization On Smart Barcodes
DOI:
https://doi.org/10.60076/indotech.v1i2.41Keywords:
LVQ Algorithm, Smart Barcodes, Efficiency, accuracyAbstract
The implementation of the Learning Vector Quantization (LVQ) algorithm on smart barcodes aims to enhance efficiency and accuracy in recognizing and tracking product data. In this context, barcodes serve as visual representations containing crucial product information. The LVQ algorithm is employed to optimize the classification and matching processes of barcode data with precise references. Through repeated training, this algorithm adapts learning vectors to better recognize barcode variations. In this study, researchers analyze the impact of LVQ algorithm implementation on smart barcode systems concerning identification accuracy, computational efficiency, and adaptability to changes. Experimental results demonstrate the significant benefits of applying barcodes to inventory systems in overall stock management and business efficiency. By utilizing barcode technology, the processes of tracking and recording product data become faster, more accurate, and automated. Barcode usage minimizes human errors, optimizes time, and reduces operational costs. By combining the intelligence of the LVQ algorithm with the potential of barcodes, this research illustrates a crucial advancement in the technology integration domain for the development of more sophisticated and effective systems
Downloads
References
Z. Lubis, A. H. A. Manaf, M. A. H. Ahmad, M. S. Abdullah, and M. Z. M. Junoh, Panduan pelaksanaan penelitian sosial, Yogyakarta, INA, Andi, 2018.
M. Rachmawati and C. Sukrisna, “Revitalisasi Sumber Daya Manusia Melalui Digitalisasi, Journal of Social Sustainability Management, vol. 2, no. 2, pp. 25–29, 2022.
S. Samsuni, “Manajemen sumber daya manusia,” Al-Falah: Jurnal Ilmiah Keislaman dan Kemasyarakatan, vol. 17, no. 1, pp. 113–124, 2017
P. A. Sunarya, “Penerapan Sertifikat pada Sistem Keamanan menggunakan Teknologi Blockchain, Jurnal MENTARI: Manajemen, Pendidikan dan Teknologi Informasi, vol.1,no.1, pp.58–67,Sept. 2022, doi : 10.33050/mentari.v1i1.139
D. Indriyani and L. Meria, “Influence of Work Environment and Work Characteristics on Turnover Intention System with Mediation Role of Work Engagement,” International Journal of Cyber and IT Service Management, vol. 2, no. 2, pp. 127–138, Sep. 2022, doi: 10.34306/ijcitsm.v2i2.108
A. N. Halimah and H. Abdullah, “‘Student preference towards the utilization of Edmodo as a learning platform to develop responsible learning environments’ study,” 2022.
Usman, W., Damanik, I. S., & Hardinata, J. T. Jaringan Syaraf Tiruan dengan Metode Learning Vector Quantization (LVQ) dalam Menentukan Klasifikasi Jenis Tilang Berdasarkan Kendaraan. In Prosiding Seminar Nasional Riset Information Science, Vol. 1, Sep.2020, pp. 780-787, doi : 10.30645/senaris.v1i0.84
Harliana, H., & Kirono, S. Penerapan Learning Vector Quantization Dalam Memprediksi Jumlah Rumah Tangga Miskin. Jurnal Sains dan Informatika, vol. 5, no 2, pp. 118-127, Dec. 2019, doi : 10.34128/jsi.v5i2.192
Gea, J. (2022). Implementasi Algoritma Learning Vector Quantization Untuk Pengenalan Barcode Barang. Journal of Informatics, Electrical and Electronics Engineering, vol. 2, no. 1, pp. 1–4, Sep. 2022.
Kartini, D., Nugroho, R. A., & Faisal, M. R. Klasifikasi Kelulusan Mahasiswa Menggunakan Algoritma Learning Vector Quantization. POSITIF: Jurnal Sistem Dan Teknologi Informasi, vol. 3, no. 2, pp. 93–98, Dec. 2017, doi : 10.31961/positif.v3i2.420
Ananda, M. I., Ridhoni, W., & Kom, S. Rancang Bangun Sistem Inventaris Barangmenggunakan Barcode (Studi Kasus: Politeknik Hasnur). Phasti: Jurnal Teknik Informatika Politeknik Hasnur, vol. 5, no. 2, pp 25–35. Oct. 2019, doi : 10.46365/pha.v5i02.344
Kartini, D., Nugroho, R. A., & Faisal, M. R. Classification of Student Graduation Using Learning Vector Quantization Algorithm. POSITIF: Jurnal Sistem Dan Teknologi Informasi, vol. 3, no. 2, pp 93–98. Dec. 2017, doi : 10.31961/positif.v3i2.420
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Andre, Achmad Fauzi, Milli Alfhi Syari

This work is licensed under a Creative Commons Attribution 4.0 International License.
















